首页> 外文OA文献 >The multi-objective multi-vehicle pickup and delivery problem with time windows
【2h】

The multi-objective multi-vehicle pickup and delivery problem with time windows

机译:具有时间窗的多目标多车辆拾取和交付问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Single Objective Single Vehicle Pickup and Delivery Problem (SOSV-PDP) is a Vehicle Routing Problem (VRP) in which the vehicle, based at the depot, has to visit exactly once a set of customers with known demand. Each request specifies two locations: an origin for the picking and one for the delivery. The vehicle must start and finish at the depot and the total handled demand must not exceed its capacity. Moreover, for each request, the origin must precede the destination (precedence constraints). In the SOSV-PDP with Time Windows (SOSV-PDPTW), each request specifies also a time window. Therefore, the vehicle has to serve the customer within the time window (time window constraint). The Single Objective Multiple Vehicle-PDPTW (SOMV-PDPTW) is an extension of SOSV-PDPTW where customers are served by a fleet (usually homogeneous) of vehicles. Therefore, together with the precedencies, for each request, the origin and the destination have to belong to the same route (pairing constraints). In the traditional SOMV-PDPTW, only one objective is optimized (usually, the total travel cost); while, in the literature, few multi-objective MOSV-PDPTW exist that optimize at most three criteria simultaneously. The contribution of this paper consists in addressing the MOMV-PDPTW from both a modeling and methodological point of view. In fact, the MOMV-PDPTW is firstly modeled with the aim of optimizing the number of vehicles, the total travel cost and the longest travel cost, simultaneously; then, a two-step solution approach is proposed. In particular, in the first step, a set of feasible routes is generated by properly adapting some meta-heuristics proposed in literature for the SOMV-PDPTW; then, set partitioning optimization problems are solved within an є-constraint framework. More specifically, each set partitioning problem selects the routes from the feasible set, optimizing one criterion at time, constraining the remaining ones by appropriate upper bounds and satisfying customer requirements. Finally, the second step finds the set of efficient solutions for approximating the Pareto Fronts. Computational experiments, carried out on some instances generated in literature, show that our approach determines good quality Efficient Pareto Fronts (in terms of number of efficient solutions) and also provides well-diversified efficient sets. This last aspect is properly evaluated by computing the Spread metric on each of the instances.
机译:单目标单车接送问题(SOSV-PDP)是一种车辆路径选择问题(VRP),其中,基于仓库的车辆必须一次拜访一组已知需求的客户。每个请求指定两个位置:一个拣配的起点和一个交货地点。车辆必须在仓库开始和结束,处理的总需求不得超过其容量。此外,对于每个请求,起点必须在终点之前(优先约束)。在带有时间窗口的SOSV-PDP(SOSV-PDPTW)中,每个请求还指定一个时间窗口。因此,车辆必须在时间窗口(时间窗口约束)内为客户服务。单目标多车辆PDPTW(SOMV-PDPTW)是SOSV-PDPTW的扩展,在该系统中,车队(通常是同类车辆)为客户提供服务。因此,连同优先顺序,对于每个请求,起点和终点必须属于同一条路线(配对约束)。在传统的SOMV-PDPTW中,仅优化了一个目标(通常是总旅行成本);而在文献中,很少有多目标MOSV-PDPTW同时最多优化三个标准。本文的贡献在于从建模和方法论的角度解决MOMV-PDPTW。实际上,首先对MOMV-PDPTW建模是为了同时优化车辆数量,总旅行成本和最长旅行成本。然后,提出了一种两步求解方法。特别是,第一步,通过适当地修改文献中针对SOMV-PDPTW提出的一些元启发式方法,生成一组可行的路线。然后,在є约束框架内解决集合划分优化问题。更具体地,每个集合划分问题从可行集合中选择路线,及时优化一个准则,通过适当的上限约束其余的准则并满足客户需求。最后,第二步是找到一组有效的解决方案,以近似帕累托前沿。对文献中某些实例进行的计算实验表明,我们的方法确定了高质量的高效Pareto前沿(就有效解决方案的数量而言),并且还提供了多样化的高效集合。通过在每个实例上计算“传播”度量,可以正确评估最后一个方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号